Legumes are different: Leaf nitrogen, photosynthesis, and water use efficiency.

نویسندگان

  • Mark Andrew Adams
  • Tarryn L Turnbull
  • Janet I Sprent
  • Nina Buchmann
چکیده

Using robust, pairwise comparisons and a global dataset, we show that nitrogen concentration per unit leaf mass for nitrogen-fixing plants (N2FP; mainly legumes plus some actinorhizal species) in nonagricultural ecosystems is universally greater (43-100%) than that for other plants (OP). This difference is maintained across Koppen climate zones and growth forms and strongest in the wet tropics and within deciduous angiosperms. N2FP mostly show a similar advantage over OP in nitrogen per leaf area (Narea), even in arid climates, despite diazotrophy being sensitive to drought. We also show that, for most N2FP, carbon fixation by photosynthesis (Asat) and stomatal conductance (gs) are not related to Narea-in distinct challenge to current theories that place the leaf nitrogen-Asat relationship at the center of explanations of plant fitness and competitive ability. Among N2FP, only forbs displayed an Narea-gs relationship similar to that for OP, whereas intrinsic water use efficiency (WUEi; Asat/gs) was positively related to Narea for woody N2FP. Enhanced foliar nitrogen (relative to OP) contributes strongly to other evolutionarily advantageous attributes of legumes, such as seed nitrogen and herbivore defense. These alternate explanations of clear differences in leaf N between N2FP and OP have significant implications (e.g., for global models of carbon fluxes based on relationships between leaf N and Asat). Combined, greater WUE and leaf nitrogen-in a variety of forms-enhance fitness and survival of genomes of N2FP, particularly in arid and semiarid climates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Size dependency of photosynthetic water- and nitrogen-use efficiency and hydraulic limitation in Acer mono.

We examined open-grown Acer mono Maxim. trees of different sizes to test the hypotheses that (1) hydraulic limitation increases with tree size, thereby reducing photosynthesis, and (2) photosynthetic water- and nitrogen-use efficiencies change with tree size. Maximum net assimilation rate per unit dry mass was significantly lower in large trees than in small trees, whereas leaf nitrogen concent...

متن کامل

Nitrogen nutrition and water stress effects on leaf photosynthetic gas exchange and water use efficiency in winter wheat.

The responses of gas exchange and water use efficiency to nitrogen nutrition for winter wheat were investigated under well-watered and drought conditions. The photosynthetic gas exchange parameters of winter wheat are remarkably improved by water and nitrogen nutrition and the regulative capability of nitrogen nutrition is influenced by water status. The effects of nitrogen nutrition on photosy...

متن کامل

Least-cost input mixtures of water and nitrogen for photosynthesis.

In microeconomics, a standard framework is used for determining the optimal input mix for a two-input production process. Here we adapt this framework for understanding the way plants use water and nitrogen (N) in photosynthesis. The least-cost input mixture for generating a given output depends on the relative cost of procuring and using nitrogen versus water. This way of considering the issue...

متن کامل

تأثیر مقادیر کود نیتروژن و آب آبیاری بر عملکرد دانه و راندمان مصرف آب گلرنگ در اصفهان

An experiment was conducted to evaluate the effects of different levels of nitrogen and irrigation on yield and yield components of safflower. Three nitrogen rates (0, 50 and 100 kg ha-1) under three irrigation levels (100% as control 80% as mild limited irrigation, and 60% of crop water requirement as severe limited irrigation) were investigated using a factorial laid out in a randomized comp...

متن کامل

Nitrogen allocation and partitioning in invasive and native Eupatorium species.

There is a trade-off between nitrogen (N) allocation to photosynthesis and to defence. Invasive species may reduce N allocation to defence because of the absence of natural enemies. Thus, I hypothesised that invasive species may allocate a higher fraction of total leaf N to photosynthesis and have higher light-saturated photosynthetic rate (P(max)) and photosynthetic N-use efficiency (PNUE) tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 113 15  شماره 

صفحات  -

تاریخ انتشار 2016